
Kedro Vertex AI Plugin
Release 0.10.0

GetInData

Nov 22, 2023

CONTENTS:

1 Introduction 1
1.1 What is GCP VertexAI Pipelines? . 1
1.2 Why to integrate Kedro project with Vertex AI Pipelines? . 1

2 Installation 3
2.1 Installation guide . 3
2.2 Configuration . 4

3 Getting started 11
3.1 Quickstart . 11
3.2 GCP AI Platform support . 15
3.3 Mlflow support . 17
3.4 Continuous Deployment . 20
3.5 Authenticating to Kubeflow Pipelines API . 21

4 Indices and tables 23

i

ii

CHAPTER

ONE

INTRODUCTION

1.1 What is GCP VertexAI Pipelines?

Vertex AI Pipelines is a Google Cloud Platform service that aims to deliver Kubeflow Pipelines functionality in a fully
managed fashion. Vertex AI Pipelines helps you to automate, monitor, and govern your ML systems by orchestrating
your ML workflow in a serverless manner.

1.2 Why to integrate Kedro project with Vertex AI Pipelines?

Throughout couple years of exploring ML Ops ecosystem as software developers we’ve been looking for a framework
that enforces the best standards and practices regarding ML model development and Kedro Framework seems like a
good fit for this position, but what happens next, once you’ve got the code ready?

It seems like the ecosystem grown up enough so you no longer need to release models you’ve trained with Jupyter
notebook on your local machine on Sunday evening. In fact there are many tools now you can use to have an elegant
model delivery pipeline that is automated, reliable and in some cases can give you a resource boost that’s often crucial
when handling complex models or a load of training data. With the help of some plugins You can develop your ML
training code with Kedro and execute it using multiple robust services without changing the business logic.

We currently support:

• Kubeflow kedro-kubeflow

• Airflow on Kubernetes kedro-airflow-k8s

And with this kedro-vertexai plugin, you can run your code on GCP Vertex AI Pipelines in a fully managed fashion

1

https://cloud.google.com/vertex-ai/docs/pipelines/introduction
https://www.kubeflow.org/docs/components/pipelines/introduction/
https://github.com/getindata/kedro-kubeflow
https://github.com/getindata/kedro-airflow-k8s

Kedro Vertex AI Plugin, Release 0.10.0

2 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

2.1 Installation guide

2.1.1 Kedro setup

First, you need to install base Kedro package

$ pip install "kedro>=0.18.1,<0.19.0"

2.1.2 Plugin installation

Install from PyPI

You can install kedro-vertexai plugin from PyPi with pip:

pip install --upgrade kedro-vertexai

Install from sources

You may want to install the develop branch which has unreleased features:

pip install git+https://github.com/getindata/kedro-vertexai.git@develop

2.1.3 Available commands

You can check available commands by going into project directory and running:

$ kedro vertexai
Usage: kedro vertexai [OPTIONS] COMMAND [ARGS]...

Interact with Google Cloud Platform :: Vertex AI Pipelines

Options:
-e, --env TEXT Environment to use.
-h, --help Show this message and exit.

Commands:
(continues on next page)

3

Kedro Vertex AI Plugin, Release 0.10.0

(continued from previous page)

compile Translates Kedro pipeline into JSON file with VertexAI...
init Initializes configuration for the plugin
list-pipelines List deployed pipeline definitions
run-once Deploy pipeline as a single run within given experiment...
schedule Schedules recurring execution of latest version of the...
ui Open VertexAI Pipelines UI in new browser tab

Warning: vertexai sub-command group only becomes visible when used inside kedro project context. Make
sure that you’re inside one, in case you see the message:

Error: No such command 'vertexai'.

init

init command takes two arguments: PROJECT_ID and REGION. This command generates a sample configuration file
in conf/base/vertexai.yaml. The YAML file content is described in the Configuration section.

ui

ui command opens a web browser pointing to the currently configured Vertex AI Pipelines UI on GCP web console.

list-pipelines

list-pipelines uses Vertex AI API to retrieve list of all pipelines

compile

compile transforms Kedro pipeline into Vertex AI workflow. The resulting json file can be uploaded to Vertex AI
Pipelines via Python Client e.g. from your CI/CD job.

run-once

run-once is all-in-one command to compile the pipeline and run it in the GCP Vertex AI Pipelines environment.

2.2 Configuration

Plugin maintains the configuration in the conf/base/vertexai.yaml file. Sample configuration can be generated
using kedro vertexai init:

Configuration used to run the pipeline
project_id: my-gcp-mlops-project
region: europe-west1
run_config:
Name of the image to run as the pipeline steps
image: eu.gcr.io/my-gcp-mlops-project/example_model:${commit_id}

(continues on next page)

4 Chapter 2. Installation

https://cloud.google.com/vertex-ai/docs/pipelines/build-pipeline#submit_your_pipeline_run

Kedro Vertex AI Plugin, Release 0.10.0

(continued from previous page)

Pull policy to be used for the steps. Use Always if you push the images
on the same tag, or Never if you use only local images
image_pull_policy: IfNotPresent

Location of Vertex AI GCS root
root: bucket_name/gcs_suffix

Name of the kubeflow experiment to be created
experiment_name: MyExperiment

Name of the scheduled run, templated with the schedule parameters
scheduled_run_name: MyExperimentRun

Optional pipeline description
#description: "Very Important Pipeline"

Optional config for node execution grouping. - 2 classes are provided:
- default no-grouping option IdentityNodeGrouper
- tag based grouping with TagNodeGrouper
grouping:
cls: kedro_vertexai.grouping.IdentityNodeGrouper
cls: kedro_vertexai.grouping.TagNodeGrouper
params:

tag_prefix: "group:"

How long to keep underlying Argo workflow (together with pods and data
volume after pipeline finishes) [in seconds]. Default: 1 week
ttl: 604800

What Kedro pipeline should be run as the last step regardless of the
pipeline status. Used to send notifications or raise the alerts
on_exit_pipeline: notify_via_slack

Optional section allowing adjustment of the resources, reservations and limits
for the nodes. You can specify node names or tags to select which nodes the␣

→˓requirements
apply to (also in node selectors). When not provided they're set to 500m cpu and␣

→˓1024Mi memory.
If you don't want to specify pipeline resources set both to None in __default__.
resources:

For nodes that require more RAM you can increase the "memory"
data-import-node:
memory: 2Gi

Training nodes can utilize more than one CPU if the algorithm
supports it
model-training-node:
cpu: 8
memory: 60Gi

(continues on next page)

2.2. Configuration 5

Kedro Vertex AI Plugin, Release 0.10.0

(continued from previous page)

GPU-capable nodes can request 1 GPU slot
tensorflow-node:
gpu: 1

Resources can be also configured via nodes tag
(if there is node name and tag configuration for the same
resource, tag configuration is overwritten with node one)
gpu_node_tag:
cpu: 1
gpu: 2

Default settings for the nodes
__default__:
cpu: 200m
memory: 64Mi

Optional section allowing to configure node selectors constraints
like gpu accelerator for nodes with gpu resources.
(Note that not all accelerators are available in all
regions - https://cloud.google.com/compute/docs/gpus/gpu-regions-zones)
and not for all machines and resources configurations -
https://cloud.google.com/vertex-ai/docs/training/configure-compute#specifying_gpus
node_selectors:
gpu_node_tag:
cloud.google.com/gke-accelerator: NVIDIA_TESLA_T4

tensorflow-step:
cloud.google.com/gke-accelerator: NVIDIA_TESLA_K80

Optional section allowing to generate config files at runtime,
useful e.g. when you need to obtain credentials dynamically and store them in␣

→˓credentials.yaml
but the credentials need to be refreshed per-node
(which in case of Vertex AI would be a separate container / machine)
Example:
dynamic_config_providers:
- cls: kedro_vertexai.auth.gcp.MLFlowGoogleOAuthCredentialsProvider
params:
client_id: iam-client-id

dynamic_config_providers: []

2.2.1 Dynamic configuration support

The plugin relies on the project configuration and uses the same config loader that your project uses. For some cases,
you need to modify the settings.py to work with our plugin. Follow the instructions below.

Every Kedro Vertex AI job gets injected with two environment variables:

• KEDRO_CONFIG_JOB_NAME - contains name of the job from Vertex AI

• KEDRO_CONFIG_RUN_ID - contains unique run identifier from Vertex AI

You can consume them as you like or use them within config loaders.

6 Chapter 2. Installation

Kedro Vertex AI Plugin, Release 0.10.0

Using OmegaConfigLoader

kedro-vertexai supports OmegaConfigLoader. In order to configure it, update the settings.py file in your Kedro
project as follows:

from kedro.config import OmegaConfigLoader
CONFIG_LOADER_CLASS = OmegaConfigLoader
CONFIG_LOADER_ARGS = {

other args
"config_patterns": {"vertexai": ["vertexai*"]}

}

Follow Kedro’s official documentation, to see how to add templating, custom resolvers etc.
(https://docs.kedro.org/en/stable/configuration/advanced_configuration.html#how-to-do-templating-with-the-
omegaconfigloader)[https://docs.kedro.org/en/stable/configuration/advanced_configuration.html#how-to-do-
templating-with-the-omegaconfigloader]

Using TemplatedConfigLoader

TemplatedConfigLoader allows passing environment variables to configuration files. It reads all environment vari-
ables following KEDRO_CONFIG_<NAME> pattern, which you can later inject in configuration file using ${name} syntax.

This feature is especially useful for keeping the executions of the pipelines isolated and traceable by dynamically setting
output paths for intermediate data in the Data Catalog, e.g.

...
train_x:
type: pandas.CSVDataSet
filepath: gs://<bucket>/kedro-vertexai/${run_id}/05_model_input/train_x.csv

train_y:
type: pandas.CSVDataSet
filepath: gs://<bucket>/kedro-vertexai/${run_id}/05_model_input/train_y.csv

...

In this case, the ${run_id} placeholder will be substituted by the unique run identifier from Vertex AI Pipelines.

Dynamic config providers

When running the job in VertexAI it’s possible to generate new configuration files at runtime if that’s required, one
example could be generating Kedro credentials on a Vertex AI’s node level (the opposite would be supplying the
credentials when starting the job).

Example:

run_config:
...
dynamic_config_providers:
- cls: <fully qualified class name inheriting from kedro_vertexai.dynamic_config.

→˓DynamicConfigProvider>
params:
... params passed to the constructor of the class
abc: value1
xyz: value2

2.2. Configuration 7

Kedro Vertex AI Plugin, Release 0.10.0

The cls fields should contain a fully qualified reference to a class implementing abstract kedro_vertexai.
dynamic_config.DynamicConfigProvider. All params will be passed as kwargs to the class’s constructor. Two
required methods are:

@property
def target_config_file(self) -> str:

return "name-of-the-config-file.yml"

def generate_config(self) -> dict:
return {

"layout": {
"of-the-target": {

"config-file": "value"
}

}
}

First one - target_config_file should return the name of the configuration file to be generated (e.g. credentials.
yml) and the generate_config should return a dictionary, which will be then serialized into the target file as YAML. If
the target file already exists during the invocation, it will be merged (see method kedro_vertexai.dynamic_config.
DynamicConfigProvider.merge_with_existing) with the existing one and then saved again. Note that the
generate_config has access to an initialized plugin config via self.config property, so any values from the
vertexai.yml configuration is accessible.

2.2.2 Grouping feature

Optional grouping section enables grouping feature that aggregates many Kedro nodes execution to single VertexAI
node(s). Using it allows you to freely subdivide Kedro pipelines to as many steps as logically makes sense while
keeping advantages of in memory data transmission possibilities. It also saves you a lot of time avoiding delays of
docker container starting at Vertex nodes which can amount to about 2 minutes for each VertexAI node.

API allows implementation of your own aggregation method. You can provide aggregating class and its additional
init params as kwargs dictionary. Default class is IdentitiyNodeGrouper which actually does not group the nodes
(plugin behaves as in versions before 0.9.1). Class that implements grouping using configured tag prefix is called
TagNodeGrouper. The default prefix is "group:". It uses what follows after the tag prefix as a name of group of
nodes. Only one tag with this grouping prefix is allowed per node; more than that results in GroupingException.
Example configuration:

grouping:
cls: kedro_vertexai.grouping.TagNodeGrouper
params:

tag_prefix: "group:"

The above configuration will result in the following result in this sample pipeline:

Pipeline([
node(some_operation, "A", "B", name="node1", tags=["foo", "group:nodegroup"]),
node(some_operation, "B", "C", name="node2", tags=["bar", "group:nodegroup"]),
node(some_operation, "C", "D", name="node3", tags=["baz"]),

])

The result will be 2 VertexAI nodes for this pipeline, first with name nodegroup that will run node1 and node2 Kedro
nodes inside and provide output C and second VertexAI node: node3. Additional MLflow node can be present if

8 Chapter 2. Installation

Kedro Vertex AI Plugin, Release 0.10.0

kedro-mlflow is used. Right now it is not possible to group it. If you feel you need that functionality search for/create
an issue on github page of the plugin.

This grouping class is used during pipeline translation at plugin pipeline generator. It implements interface of
NodeGrouper class with group function, that accepts pipeline.node_dependencies and returns Grouping.
Grouping is a dataclass with two dictionaries:

• node_mapping - which defines names of groups and says which sets of nodes are part of a given group

• dependencies - which defines child-parent relation of all groups in node_mapping. Grouping class also
validates dependencies upon creation to check whether the grouping is valid. That means it does not introduce a
cycle in dependencies graph.

Warning: Make sure that all nodes in pipeline have names and their names are unique within the pipeline when
using this feature, as grouping class and VertexAI nodes naming depend on it.

Example

Here you can see how standard spaceflights changes after enabling the grouping feature configured with
TagNodeGrouper, when using the following tagging (view from kedro viz):

We get the following result:

2.2. Configuration 9

https://github.com/getindata/kedro-vertexai/issues

Kedro Vertex AI Plugin, Release 0.10.0

2.2.3 Resources configuration

Optional resources and node_selectors sections enable adjustment of the resources reservations and limits for the
selected Kedro nodes. Settings for individual nodes, we can define in two ways - using the name of the node or its tag
(if there is node name and tag configuration for the same resource, tag configuration is overwritten with node one). For
example, with the vertexai.yaml configuration file shown at the beginning of the chapter and the Kedro pipeline
containing such a node:

def create_pipeline(**kwargs):
return Pipeline(

[
node(

func=train_model,
inputs=["X_train", "y_train"],
outputs="regressor",
name="model_training_node",
tags="gpu_node_tag",

),
]

)

we expect this particular node to run with two NVIDIA_TESLA_T4GPUs, eight CPUs, and memory allocated according
to the specified 60Gi limit. (Note that not all accelerators are available in all regions and not for all machines and
resources configurations)

10 Chapter 2. Installation

https://kedro.readthedocs.io/en/stable/nodes_and_pipelines/nodes.html#how-to-tag-a-node
https://cloud.google.com/compute/docs/gpus/gpu-regions-zones
https://cloud.google.com/vertex-ai/docs/training/configure-compute#specifying_gpus
https://cloud.google.com/vertex-ai/docs/training/configure-compute#specifying_gpus

CHAPTER

THREE

GETTING STARTED

3.1 Quickstart

3.1.1 Preprequisites

The quickstart assumes user have access to Vertex AI Pipelines service.

3.1.2 Install the toy project with Vertex AI Pipelines support

It is a good practice to start by creating a new virtualenv before installing new packages. Therefore, use virtalenv
command to create new env and activate it:

$ virtualenv venv-demo
created virtual environment CPython3.8.12.final.0-64 in 764ms
creator CPython3Posix(dest=/home/getindata/kedro/venv-demo, clear=False, no_vcs_

→˓ignore=False, global=False)
seeder FromAppData(download=False, pip=bundle, setuptools=bundle, wheel=bundle,␣

→˓via=copy)
added seed packages: pip==22.0.4, setuptools==60.9.3, wheel==0.37.1

activators BashActivator,CShellActivator,FishActivator,NushellActivator,
→˓PowerShellActivator,PythonActivator
$ source venv-demo/bin/activate

Then, kedro must be present to enable cloning the starter project, along with the latest version of kedro-kubeflow
plugin and kedro-docker (required to build docker images with the Kedro pipeline nodes):

$ pip install 'kedro>=0.18.1,<0.19.0' kedro-vertexai kedro-docker

With the dependencies in place, let’s create a new project:

$ kedro new --starter=spaceflights

Project Name:
=============
Please enter a human readable name for your new project.
Spaces and punctuation are allowed.
[New Kedro Project]: Vertex AI Plugin Demo

Repository Name:
================

(continues on next page)

11

Kedro Vertex AI Plugin, Release 0.10.0

(continued from previous page)

Please enter a directory name for your new project repository.
Alphanumeric characters, hyphens and underscores are allowed.
Lowercase is recommended.
[vertex-ai-plugin-demo]:

Python Package Name:
====================
Please enter a valid Python package name for your project package.
Alphanumeric characters and underscores are allowed.
Lowercase is recommended. Package name must start with a letter
or underscore.
[vertex_ai_plugin_demo]:

Change directory to the project generated in /Users/getindata/vertex-ai-plugin-demo

A best-practice setup includes initialising git and creating a virtual environment␣
→˓before running ``kedro install`` to install project-specific dependencies. Refer to␣
→˓the Kedro documentation: https://kedro.readthedocs.io/

Finally, go the demo project directory and ensure that kedro-vertexai plugin is activated:

$ cd vertexai-plugin-demo/
$ pip install -r src/requirements.txt
(...)
Requirements installed!

$ kedro vertexai --help
Usage: kedro vertexai [OPTIONS] COMMAND [ARGS]...

Interact with Google Cloud Platform :: Vertex AI Pipelines

Options:
-e, --env TEXT Environment to use.
-h, --help Show this message and exit.

Commands:
compile Translates Kedro pipeline into JSON file with VertexAI...
init Initializes configuration for the plugin
list-pipelines List deployed pipeline definitions
run-once Deploy pipeline as a single run within given experiment...
schedule Schedules recurring execution of latest version of the...
ui Open VertexAI Pipelines UI in new browser tab

12 Chapter 3. Getting started

Kedro Vertex AI Plugin, Release 0.10.0

3.1.3 Build the docker image to be used in Vertex AI Pipelines runs

First, initialize the project with kedro-docker configuration by running:

$ kedro docker init

This command creates a several files, including .dockerignore. This file ensures that transient files are not included
in the docker image and it requires small adjustment. Open it in your favourite text editor and extend the section #
except the following by adding there:

!data/01_raw

Ensure right requirements.txt

You need to make sure that before you build the docker image and submit the job to Vertex AI Pipelines, all of your
project’s Python package requirements are properly saved in requirements.txt, that includes this plugin. Ensure
that the src/requirements.txt contains this line

kedro-vertexai

Adjusting Data Catalog to be compatible with Vertex AI

This change enforces raw input data existence in the image. While running locally, every intermediate dataset is stored
as a MemoryDataSet. When running in VertexAI Pipelines, there is no shared-memory, Kedro-VertexAI plugin auto-
matically handles intermediate dataset serialization - every intermediate dataset will be stored (as a compressed cloud-
pickle file) in GCS bucket specified in the vertexai.yml config under run_config.root key. Adjusted catalog.
yml should look like this (note: remove the rest of the entries which comes with the spaceflights starter - you need only
companies,reviews,shuttles.)

companies:
type: pandas.CSVDataSet
filepath: data/01_raw/companies.csv
layer: raw

reviews:
type: pandas.CSVDataSet
filepath: data/01_raw/reviews.csv
layer: raw

shuttles:
type: pandas.ExcelDataSet
filepath: data/01_raw/shuttles.xlsx
layer: raw

All intermediate and output data will be stored in the location with the following pattern:

gs://<run_config.root from vertexai.yml>/kedro-vertexai-temp/<vertex ai job name>/*.bin

Of course if you want to use intermediate/output data and store it a location of your choice, add it to the catalog. Be
aware that you cannot use local paths - use gs:// paths instead.

3.1. Quickstart 13

Kedro Vertex AI Plugin, Release 0.10.0

Disable telemetry or ensure consent

Latest version of Kedro starters come with the kedro-telemetry installed, which by default prompts the user to allow
or deny the data collection. Before submitting the job to Vertex AI Pipelines you have two options:

• allow the telemetry by setting consent: true in the .telemetry file in the project root directory

• disable telemetry by removing kedro-telemetry from the src/requirements.txt.

If you leave the .telemetry file with default consent: false, the pipeline will crash in runtime in Vertex AI,
because kedro-telemetry will spawn an interactive prompt and ask for the permission to collect the data.

The usage of ${run_id} is described in section Dynamic configuration support.

Build the image

Execute:

kedro docker build --docker-args "--build-arg BASE_IMAGE=python:3.8-buster"

When execution finishes, your docker image is ready. If you don’t use local cluster, you should push the image to the
remote repository:

docker tag vertex-ai-plugin-demo:latest remote.repo.url.com/vertex-ai-plugin-demo:latest
docker push remote.repo.url.com/vertex-ai-plugin-demo:latest

3.1.4 Run the pipeline on Vertex AI

First, run init script to create the sample configuration. There are 2 parameters:

• PROJECT_ID which is ID of your Google Cloud Platform project - can be obtained from GCP Console or from
command line (gcloud config get-value project)

• REGION - Google Cloud Platform region in which the Vertex AI pipelines should be executed (e.g.
europe-west1).

kedro vertexai init <GCP PROJECT ID> <GCP REGION>
(...)
Configuration generated in /Users/getindata/vertex-ai-plugin-demo/conf/base/vertexai.yaml

Then adjust the conf/base/vertexai.yaml, especially:

• image: key should point to the full image name (like remote.repo.url.com/
vertex-ai-plugin-demo:latest if you pushed the image at this name).

• root: key should point to the GCS bucket that will be used internally by Vertex AI and the plugin itself, e.g.
your_bucket_name/subfolder-for-vertexai

Finally, everything is set to run the pipeline on Vertex AI Pipelines. Execute run-once command:

$ kedro vertexai run-once
2022-03-18 13:44:27,667 - kedro_vertexai.client - INFO - Generated pipeline definition␣
→˓was saved to /var/folders/0b/mdxthmvd74x90fp84zl4mb5h0000gn/T/kedro-vertexai2jyrt89b.
→˓json
See the Pipeline job here: https://console.cloud.google.com/vertex-ai/locations/europe-
→˓west1/pipelines/runs/vertex-ai-plugin-demo-20220318124425?project=gid-ml-ops-sandbox

14 Chapter 3. Getting started

https://console.cloud.google.com/

Kedro Vertex AI Plugin, Release 0.10.0

As you can see, the pipeline was compiled and started in Vertex AI Pipelines. When you visit the link shown in logs
you can observe the running pipeline:

3.2 GCP AI Platform support

Google Cloud’s AI Platform offers couple services that simplify Machine Learning tasks with use of Kubeflow based
components.

3.2.1 Using kedro with AI Platform Notebooks

AI Platform Notebooks provides an easy way to manage and host JupyterLab based data science workbench environ-
ment. What we’ve found out is that the default images provided by a service cause some dependency conflicts. To avoid
this issues make sure you use isolated virtual environment, e.g. virtualenv. New virtual environment can be created by
simply invoking python -m virtualenv venv command.

3.2.2 Using kedro-kubeflow with AI Platform Pipelines

AI Platform Pipelines is a service that allows to easily deploy Kubeflow Pipelines on new or existing Google Kubernetes
Engine clusters.

In general kedro-kubeflow plugin should work with AI Platform Pipelines out of the box, with the only exception is
that it requires authentication. Note that the host variable should point to a dashboard URL generated by AI Platform
Pipelines service (e.g. https://653hddae86eb7b0-dot-europe-west1.pipelines.googleusercontent.com/), just open the
dashboard from the service page and copy url from the browser.

Below is the list of authentication scenarios supported so far:

1. Connecting to AI Pipelines from AI Platform Notebooks

In this scenario authentication works out of the box with default credentials mechanism.

2. Authentication to AI Pipelines from local environment

To interact with AI Platform Pipelines from local environment you can use the mechanisms provided by Google Cloud
SDK. After installing the SDK run google cloud application-default login to initialize default credentials
on your local machine.

You can use service account key for authentication as well. To make that work just set
GOOGLE_APPLICATION_CREDENTIALS environment variable to the path of where the service account key file
is stored.

3.2. GCP AI Platform support 15

https://cloud.google.com/ai-platform-notebooks
https://pypi.org/project/virtualenv/
https://cloud.google.com/ai-platform/pipelines/docs/introduction
https://www.kubeflow.org/docs/pipelines/overview/pipelines-overview/
https://console.cloud.google.com/ai-platform/pipelines/clusters
https://cloud.google.com/sdk
https://cloud.google.com/sdk

Kedro Vertex AI Plugin, Release 0.10.0

3. Authenticating through IAP Proxy

Identity Aware Proxy is a product that allows securing your cloud based applications with Google Identity.

To authenticate with IAP find out which oauth client ID is the proxy configured with and then save it in IAP_CLIENT_ID
environment variable. The authentication should work seamlessly assuming identity you are using has been granted
access to the application.

The above will work if you are connecting from within GCP VM or locally with specified service account credentials.
It will NOT work for credentials obtained with google cloud application-default login.

3.2.3 Using kedro-kubeflow with Vertex AI Pipelines (EXPERIMENTAL)

Vertex AI Pipelines is a fully managed service that allows to easily deploy Kubeflow Pipelines on a serverless Google
service. Vertex AI Pipelines was still in a Preview mode when this plugin version was released, therefore plugin
capability is also limited.

1. Preparing configuration

In order the plugin picks Vertex AI Pipelines as a target infrastructure, it has to be indicated in configuration. As the
solution is serverless, no URL is to be provided. Instead, special set of parameters has to be passed, so that connection
is established with proper GCP service.

host: vertex-ai-pipelines
project_id: hosting-project
region: europe-west4
run_config:
root: vertex-ai-pipelines-accessible-gcs-bucket/pipelines-specific-path

If the pipeline requires access to services that are not exposed to public internet, you need to configure VPC peer-
ing between Vertex internal network and VPC that hosts the internal service and then set the VPC identifier in the
configuration. Optionally, you can add custom host aliases:

run_config:
vertex_ai_networking:
vpc: projects/12345/global/networks/name-of-vpc
host_aliases:
- ip: 10.10.10.10
hostnames: ['mlflow.internal']

- ip: 10.10.20.20
hostnames: ['featurestore.internal']

2. Preparing environment variables

There are the following specific environment variables required for the pipeline to run correctly:

• SERVICE_ACCOUNT - full email of service account that job will use to run the pipeline. Account has to have
access to run_config.root path. Variable is optional, if no given, project compute account is used

• MLFLOW_TRACKING_TOKEN - identity token required if MLFlow is used inside the project and mlflow
access is protected. Token is passed as it is to kedro nodes in order to authenticate against MLFlow service. Can
be generated via gcloud auth print-identity-token command.

16 Chapter 3. Getting started

https://cloud.google.com/iap
https://cloud.google.com/vertex-ai/docs/pipelines
https://www.kubeflow.org/docs/pipelines/overview/pipelines-overview/
https://cloud.google.com/vertex-ai/docs/pipelines
https://cloud.google.com/vertex-ai/docs/general/vpc-peering
https://cloud.google.com/vertex-ai/docs/general/vpc-peering

Kedro Vertex AI Plugin, Release 0.10.0

3. Supported commands

Following commands are supported:

kedro kubeflow compile
kedro kubeflow run-once
kedro kubeflow schedule
kedro kubeflow list-pipelines

3.3 Mlflow support

If you use MLflow and kedro-mlflow for the Kedro pipeline runs monitoring, the plugin will automatically enable
support for:

• starting the experiment when the pipeline starts,

• logging all the parameters, tags, metrics and artifacts under unified MLFlow run.

To make sure that the plugin discovery mechanism works, add kedro-mlflow and kedro-vertexai as a dependencies
to src/requirements.txt and run:

$ pip install -r src/requirements.txt
$ kedro mlflow init

Then, adjust the kedro-mlflow configuration and point to the mlflow server by editing conf/base/mlflow.yml and
adjusting server.mlflow_tracking_uri key. Then, build the image:

$ kedro docker build

And re-push the image to the remote registry. And verify how does it look in the Kubeflow UI. You should notice
mlflow-start-run step on the very top.

3.3. Mlflow support 17

https://mlflow.org/
https://kedro-mlflow.readthedocs.io/

Kedro Vertex AI Plugin, Release 0.10.0

Finally, start the pipeline. While it executes, the new Mlflow run is started and it’s constantly updated with the attributes
provided by the next steps. Finally, the experiments runs page looks like:

The UI presents the pipeline status (in form of the icon) and latest node that was run (for failed runs in indicates at
what step did the pipeline fail). Also, the vertexai_run_id and vertexai_job_name tags can be used to correlate
Mlflow run with the Vertex AI pipeline execution.

3.3.1 Authorization

For MLflow deployments that are secured with some authorization mechanism, the requests being made need to (usu-
ally) have the Authorization header set. MLflow allows to plug-in custom headers via request_header_provider
entry point. We rely on official kedro-mlflow approach. We’re providing 2 implementations of the
Authorization header provider, which obtain ID token from Google’s endpoints - either OAuth or IAM. Of
course, you can implement your own authorization mechanism by inheriting from the kedro_vertexai.auth.
mlflow_request_header_provider.RequestHeaderProviderWithKedroContext class.

18 Chapter 3. Getting started

https://kedro-mlflow.readthedocs.io/en/stable/source/04_experimentation_tracking/01_configuration.html#authentication-with-expiring-tokens

Kedro Vertex AI Plugin, Release 0.10.0

Authorization with a service account email and OAuth Client ID (IAM)

Works well with Identity-Aware-Proxy deployments of MLflow, such as MLflow on App Engine.

In the mlflow.yml

server:
... rest of the config
request_header_provider:

type: kedro_vertexai.auth.gcp.MLFlowGoogleIAMRequestHeaderProvider
pass_context: true
init_kwargs:

client_id: <OAuth Client ID>
service_account: <service account email>

OAuth2.0 based authorization

In the mlflow.yml

server:
... rest of the config
request_header_provider:

type: kedro_vertexai.auth.gcp.MLFlowGoogleOauthRequestHeaderProvider
pass_context: true
init_kwargs:

client_id: <OAuth Client ID>

In the vertexai.yml

run_config:
... rest of the config
mlflow:
request_header_provider_params:
client_id: <OAuth Client ID>

Custom authorization method

You can inherit from kedro_vertexai.auth.mlflow_request_header_provider.
RequestHeaderProviderWithKedroContext class and extend it with your own authorization method. For
example, if you want to use a custom header, you can do it like this:

from kedro_vertexai.auth.mlflow_request_header_provider import␣
→˓RequestHeaderProviderWithKedroContext
from cachetools import cached, TTLCache

class MyCustomMLflowHeaderProvider(RequestHeaderProviderWithKedroContext):
def in_context(self):

here, self.params will contain all values from the mlflow.yml:server.request_
→˓header_provider.init_kwargs dictionary

return "my_auth_info" in self.params

@cached(TTLCache(1, ttl=3600)) # it's a good practice to cache the token for some time
(continues on next page)

3.3. Mlflow support 19

https://getindata.com/blog/deploying-mlflow-google-cloud-platform-using-app-engine/

Kedro Vertex AI Plugin, Release 0.10.0

(continued from previous page)

def request_headers(self):
token = obtain_your_token_here()
return {"Authorization": f"Bearer {token}", "X-My-Custom-Header": self.params[

→˓"my_auth_info"]}

In the mlflow.yml

server:
... rest of the config
request_header_provider:

type: path.to.your.MyCustomMLflowHeaderProvider
pass_context: true # if you want to pass context. it must be named ``kedro_

→˓context`` in the ``__init__`` method of your custom ``request_header_provider``
init_kwargs:

my_kwarg: 1

3.4 Continuous Deployment

With kedro pipelines started on the remote Kubeflow Pipelnes clusters, changes in the code require re-building docker
images and (sometimes) changing the pipeline structure. To simplify this workflow, Kedro-kubeflow plugin is capable
of creating configuration for the most popular CI/CD automation tools.

The auto generated configuration defines these actions:

• on any new push to the repository - image is re-built and the pipeline is started using run-once,

• on merge to master - image is re-built, the pipeline is registered in the Pipelines and scheduled to execute on the
daily basis.

The behaviour and parameters (like schedule expression) can be adjusted by editing the generated files. The configu-
ration assumes that Google Container Registry is used to store the images, but users can freely adapt it to any (private
or public) docker images registry.

3.4.1 Github Actions

If the Kedro project is stored on github (either in private or public repository), Github Actions can be used to automate
the Continuous Deployment. To configure the repository, go to Settings->Secrets and add there:

• GKE_PROJECT: ID of the google project.

• GKE_SA_KEY: service account key, encoded with base64 (this service account must have access to push images
into registry),

• IAP_CLIENT_ID: id of the IAP proxy client to communicate with rest APIs.

Next, re-configure the project using

kedro kubeflow init --with-github-actions https://<endpoint_name>.endpoints.<project-
→˓name>.cloud.goog/pipelines

This command will generate Github Actions in .github/workflows directory. Then push the code to any branch and
go to “Actions” tab in Github interface.

20 Chapter 3. Getting started

Kedro Vertex AI Plugin, Release 0.10.0

3.5 Authenticating to Kubeflow Pipelines API

Plugin supports 2 ways of authenticating to Kubeflow Pipelines API:

3.5.1 1. KFP behind IAP proxy on Google Cloud

It’s already described in GCP AI Platform support chapter.

3.5.2 2. KFP behind Dex+authservice

Dex is the recommended authentication mechanism for on-premise Kubeflow clusters. The usual setup looks in a way
that:

• oidc-autheservice redirect unauthenticated users to Dex,

• Dex authenticates user in remote system, like LDAP or OpenID and also acts as OpenID provider,

• oidc-authservice asks Dex for token and creates the session used across entire Kubeflow.

In order to use kedro-kubeflow behind Dex-secured clusters, use the following manual:

1. Setup staticPassword authentication method and add a user that you’re going to use as CI/CD account.

2. Point your Kedro project to /pipelineAPI on Kubeflow, for example: https://kubeflow.local/pipeline

3. Set environment variables DEX_USERNAME and DEX_PASSWORD before calling kedro kubeflow

3.5. Authenticating to Kubeflow Pipelines API 21

https://github.com/arrikto/oidc-authservice
https://github.com/dexidp/dex
https://github.com/dexidp/dex/blob/b79d9a84bc0c35e13a9d5141e95b641af0f81c8f/cmd/dex/config_test.go#L105

Kedro Vertex AI Plugin, Release 0.10.0

22 Chapter 3. Getting started

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

23

	Introduction
	What is GCP VertexAI Pipelines?
	Why to integrate Kedro project with Vertex AI Pipelines?

	Installation
	Installation guide
	Kedro setup
	Plugin installation
	Install from PyPI
	Install from sources

	Available commands
	init
	ui
	list-pipelines
	compile
	run-once

	Configuration
	Dynamic configuration support
	Using OmegaConfigLoader
	Using TemplatedConfigLoader
	Dynamic config providers

	Grouping feature
	Example

	Resources configuration

	Getting started
	Quickstart
	Preprequisites
	Install the toy project with Vertex AI Pipelines support
	Build the docker image to be used in Vertex AI Pipelines runs
	Ensure right requirements.txt
	Adjusting Data Catalog to be compatible with Vertex AI
	Disable telemetry or ensure consent
	Build the image

	Run the pipeline on Vertex AI

	GCP AI Platform support
	Using kedro with AI Platform Notebooks
	Using kedro-kubeflow with AI Platform Pipelines
	1. Connecting to AI Pipelines from AI Platform Notebooks
	2. Authentication to AI Pipelines from local environment
	3. Authenticating through IAP Proxy

	Using kedro-kubeflow with Vertex AI Pipelines (EXPERIMENTAL)
	1. Preparing configuration
	2. Preparing environment variables
	3. Supported commands

	Mlflow support
	Authorization
	Authorization with a service account email and OAuth Client ID (IAM)
	OAuth2.0 based authorization
	Custom authorization method

	Continuous Deployment
	Github Actions

	Authenticating to Kubeflow Pipelines API
	1. KFP behind IAP proxy on Google Cloud
	2. KFP behind Dex+authservice

	Indices and tables

