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Introduction


What is GCP VertexAI Pipelines?

Vertex AI Pipelines [https://cloud.google.com/vertex-ai/docs/pipelines/introduction] is a Google Cloud Platform service
that aims to deliver Kubeflow Pipelines [https://www.kubeflow.org/docs/components/pipelines/introduction/] functionality
in a fully managed fashion. Vertex AI Pipelines helps you to automate, monitor, and govern your ML systems by orchestrating
your ML workflow in a serverless manner.



Why to integrate Kedro project with Vertex AI Pipelines?

Throughout couple years of exploring ML Ops ecosystem as software developers we’ve been looking for
a framework that enforces the best standards and practices regarding ML model development and Kedro
Framework seems like a good fit for this position, but what happens next, once you’ve got the code ready?

It seems like the ecosystem grown up enough so you no longer need to release models you’ve trained with
Jupyter notebook on your local machine on Sunday evening. In fact there are many tools now you can use
to have an elegant model delivery pipeline that is automated, reliable and in some cases can give you
a resource boost that’s often crucial when handling complex models or a load of training data. With the
help of some plugins You can develop your ML training code with Kedro and execute it using multiple
robust services without changing the business logic.

We currently support:


	Kubeflow kedro-kubeflow [https://github.com/getindata/kedro-kubeflow]


	Airflow on Kubernetes kedro-airflow-k8s [https://github.com/getindata/kedro-airflow-k8s]




And with this kedro-vertexai plugin, you can run your code on GCP Vertex AI Pipelines in a fully managed fashion

[image: VertexAi]
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Installation guide


Kedro setup

First, you need to install base Kedro package

$ pip install "kedro>=0.18.1,<0.19.0"







Plugin installation


Install from PyPI

You can install kedro-vertexai plugin from PyPi with pip:

pip install --upgrade kedro-vertexai







Install from sources

You may want to install the develop branch which has unreleased features:

pip install git+https://github.com/getindata/kedro-vertexai.git@develop








Available commands

You can check available commands by going into project directory and running:

$ kedro vertexai
Usage: kedro vertexai [OPTIONS] COMMAND [ARGS]...

  Interact with Google Cloud Platform :: Vertex AI Pipelines

Options:
  -e, --env TEXT  Environment to use.
  -h, --help      Show this message and exit.

Commands:
  compile         Translates Kedro pipeline into JSON file with VertexAI...
  init            Initializes configuration for the plugin
  list-pipelines  List deployed pipeline definitions
  run-once        Deploy pipeline as a single run within given experiment...
  schedule        Schedules recurring execution of latest version of the...
  ui              Open VertexAI Pipelines UI in new browser tab






init

init command takes two arguments: PROJECT_ID and REGION. This command generates a sample
configuration file in conf/base/vertexai.yaml. The YAML file content is described in the
Configuration section.



ui

ui command opens a web browser pointing to the currently configured Vertex AI Pipelines UI on GCP web console.



list-pipelines

list-pipelines uses Vertex AI API to retrieve list of all pipelines



compile

compile transforms Kedro pipeline into Vertex AI workflow. The
resulting json file can be uploaded to Vertex AI Pipelines via Python Client [https://cloud.google.com/vertex-ai/docs/pipelines/build-pipeline#submit_your_pipeline_run] e.g. from your CI/CD job.



run-once

run-once is all-in-one command to compile the pipeline and run it in the GCP Vertex AI Pipelines environment.






            

          

      

      

    

  

    
      
          
            
  
Configuration

Plugin maintains the configuration in the conf/base/vertexai.yaml file. Sample configuration can be generated using kedro vertexai init:

# Configuration used to run the pipeline
project_id: my-gcp-mlops-project
region: europe-west1
run_config:
  # Name of the image to run as the pipeline steps
  image: eu.gcr.io/my-gcp-mlops-project/example_model:${commit_id}

  # Pull policy to be used for the steps. Use Always if you push the images
  # on the same tag, or Never if you use only local images
  image_pull_policy: IfNotPresent

  # Location of Vertex AI GCS root
  root: bucket_name/gcs_suffix

  # Name of the kubeflow experiment to be created
  experiment_name: MyExperiment

  # Name of the scheduled run, templated with the schedule parameters
  scheduled_run_name: MyExperimentRun

  # Optional pipeline description
  #description: "Very Important Pipeline"

  # How long to keep underlying Argo workflow (together with pods and data
  # volume after pipeline finishes) [in seconds]. Default: 1 week
  ttl: 604800

  # What Kedro pipeline should be run as the last step regardless of the
  # pipeline status. Used to send notifications or raise the alerts
  # on_exit_pipeline: notify_via_slack

  # Optional section allowing adjustment of the resources
  # reservations and limits for the nodes
  resources:

    # For nodes that require more RAM you can increase the "memory"
    data-import-node:
      memory: 2Gi

    # Training nodes can utilize more than one CPU if the algorithm
    # supports it
    model-training-node:
      cpu: 8
      memory: 60Gi

    # GPU-capable nodes can request 1 GPU slot
    tensorflow-node:
      gpu: 1

    # Resources can be also configured via nodes tag
    # (if there is node name and tag configuration for the same
    # resource, tag configuration is overwritten with node one)
    gpu_node_tag:
      cpu: 1
      gpu: 2

    # Default settings for the nodes
    __default__:
      cpu: 200m
      memory: 64Mi

  # Optional section allowing to configure node selectors constraints
  # like gpu accelerator for nodes with gpu resources.
  # (Note that not all accelerators are available in all
  # regions - https://cloud.google.com/compute/docs/gpus/gpu-regions-zones)
  # and not for all machines and resources configurations - 
  # https://cloud.google.com/vertex-ai/docs/training/configure-compute#specifying_gpus
  node_selectors:
    gpu_node_tag:
      cloud.google.com/gke-accelerator: NVIDIA_TESLA_T4
    tensorflow-step:
      cloud.google.com/gke-accelerator: NVIDIA_TESLA_K80
      
  # Optional section allowing to generate config files at runtime,
  # useful e.g. when you need to obtain credentials dynamically and store them in credentials.yaml
  # but the credentials need to be refreshed per-node
  # (which in case of Vertex AI would be a separate container / machine)
  # Example:
  # dynamic_config_providers:
  #  - cls: kedro_vertexai.auth.gcp.MLFlowGoogleOAuthCredentialsProvider
  #    params:
  #      client_id: iam-client-id

  dynamic_config_providers: []






Dynamic configuration support

kedro-vertexai contains hook that enables TemplatedConfigLoader [https://kedro.readthedocs.io/en/stable/kedro.config.TemplatedConfigLoader.html].
It allows passing environment variables to configuration files. It reads all environment variables following KEDRO_CONFIG_<NAME> pattern, which you
can later inject in configuration file using ${name} syntax.

This feature is especially useful for keeping the executions of the pipelines isolated and traceable by dynamically setting output paths for intermediate data in the Data Catalog, e.g.

# ...
train_x:
  type: pandas.CSVDataSet
  filepath: gs://<bucket>/kedro-vertexai/${run_id}/05_model_input/train_x.csv

train_y:
  type: pandas.CSVDataSet
  filepath: gs://<bucket>/kedro-vertexai/${run_id}/05_model_input/train_y.csv
# ...





In this case, the ${run_id} placeholder will be substituted by the unique run identifier from Vertex AI Pipelines.

There are two special variables KEDRO_CONFIG_COMMIT_ID, KEDRO_CONFIG_BRANCH_NAME with support specifying default when variable is not set,
e.g. ${commit_id|dirty}


Disabling dynamic configuration hook

In current Kedro versions (<=0.18) only single configuration hook can be attached [https://github.com/kedro-org/kedro/blob/0.17.7/kedro/framework/hooks/specs.py#L304], which means if your project had a custom one, this plug-in will most likely overwrite it. You can disable this plugin’s configuration hook by setting environment variable KEDRO_VERTEXAI_DISABLE_CONFIG_HOOK to true, e.g.:

export KEDRO_VERTEXAI_DISABLE_CONFIG_HOOK=true





Once set, the plugin will provide a clear warning with a reminder:

KEDRO_VERTEXAI_DISABLE_CONFIG_HOOK environment variable is set and EnvTemplatedConfigLoader will not be used which means formatted config values like ${run_id} will not be substituted at runtime





To make plugin-compatible custom config loader you can extend the class kedro_vertexai.context_helper.EnvTemplatedConfigLoader and register your own hook.



Dynamic config providers

When running the job in VertexAI it’s possible to generate new configuration files at runtime if that’s required, one example could be generating Kedro credentials on a Vertex AI’s node level (the opposite would be supplying the credentials when starting the job).

Example:

run_config:
  # ... 
  dynamic_config_providers:
    - cls: kedro_vertexai.auth.gcp.MLFlowGoogleOAuthCredentialsProvider
      params:
        client_id: iam-client-id





The cls fields should contain a fully qualified reference to a class implementing abstract kedro_vertexai.dynamic_config.DynamicConfigProvider. All params will be passed as kwargs to the class’s constructor.
Two required methods are:

@property
def target_config_file(self) -> str:
    return "name-of-the-config-file.yml"

def generate_config(self) -> dict:
    return {
        "layout": {
            "of-the-target": {
                "config-file": "value"
            }
        }
    }





First one - target_config_file should return the name of the configuration file to be generated (e.g. credentials.yml) and the generate_config should return a dictionary, which will be then serialized into the target file as YAML. If the target file already exists during the invocation, it will be merged (see method kedro_vertexai.dynamic_config.DynamicConfigProvider.merge_with_existing ) with the existing one and then saved again.
Note that the generate_config has access to an initialized plugin config via self.config property, so any values from the vertexai.yml configuration is accessible.




Resources configuration

Optional resources and node_selectors sections enable adjustment of the resources reservations and limits for the
selected Kedro nodes. Settings for individual nodes, we can define in two ways - using the name of the node or
its tag [https://kedro.readthedocs.io/en/stable/nodes_and_pipelines/nodes.html#how-to-tag-a-node] (if there is node name and tag configuration for the same resource, tag configuration is overwritten with
node one). For example, with the vertexai.yaml configuration file shown at the beginning of the chapter and the Kedro
pipeline containing such a node:

def create_pipeline(**kwargs):
    return Pipeline(
        [
            node(
                func=train_model,
                inputs=["X_train", "y_train"],
                outputs="regressor",
                name="model_training_node",
                tags="gpu_node_tag",
            ),
        ]
    )





we expect this particular node to run with two NVIDIA_TESLA_T4 GPUs, eight CPUs, and memory allocated according to
the specified 60Gi limit. (Note that not all accelerators are available in all regions [https://cloud.google.com/compute/docs/gpus/gpu-regions-zones] and not for all machines and
resources configurations [https://cloud.google.com/vertex-ai/docs/training/configure-compute#specifying_gpus])
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Quickstart


Preprequisites

The quickstart assumes user have access to Vertex AI Pipelines service.



Install the toy project with Vertex AI Pipelines support

It is a good practice to start by creating a new virtualenv before installing new packages. Therefore, use virtalenv command to create new env and activate it:

$ virtualenv venv-demo
created virtual environment CPython3.8.12.final.0-64 in 764ms
  creator CPython3Posix(dest=/home/getindata/kedro/venv-demo, clear=False, no_vcs_ignore=False, global=False)
  seeder FromAppData(download=False, pip=bundle, setuptools=bundle, wheel=bundle, via=copy)
    added seed packages: pip==22.0.4, setuptools==60.9.3, wheel==0.37.1
  activators BashActivator,CShellActivator,FishActivator,NushellActivator,PowerShellActivator,PythonActivator
$ source venv-demo/bin/activate





Then, kedro must be present to enable cloning the starter project, along with the latest version of kedro-kubeflow plugin and kedro-docker (required to build docker images with the Kedro pipeline nodes):

$ pip install 'kedro>=0.18.1,<0.19.0' kedro-vertexai kedro-docker





With the dependencies in place, let’s create a new project:

$ kedro new --starter=spaceflights

Project Name:
=============
Please enter a human readable name for your new project.
Spaces and punctuation are allowed.
 [New Kedro Project]: Vertex AI Plugin Demo

Repository Name:
================
Please enter a directory name for your new project repository.
Alphanumeric characters, hyphens and underscores are allowed.
Lowercase is recommended.
 [vertex-ai-plugin-demo]:

Python Package Name:
====================
Please enter a valid Python package name for your project package.
Alphanumeric characters and underscores are allowed.
Lowercase is recommended. Package name must start with a letter
or underscore.
 [vertex_ai_plugin_demo]:

Change directory to the project generated in /Users/getindata/vertex-ai-plugin-demo

A best-practice setup includes initialising git and creating a virtual environment before running ``kedro install`` to install project-specific dependencies. Refer to the Kedro documentation: https://kedro.readthedocs.io/





Finally, go the demo project directory and ensure that kedro-vertexai plugin is activated:

$ cd vertexai-plugin-demo/
$ pip install -r src/requirements.txt
(...)
Requirements installed!

$ kedro vertexai --help
Usage: kedro vertexai [OPTIONS] COMMAND [ARGS]...

  Interact with Google Cloud Platform :: Vertex AI Pipelines

Options:
  -e, --env TEXT  Environment to use.
  -h, --help      Show this message and exit.

Commands:
  compile         Translates Kedro pipeline into JSON file with VertexAI...
  init            Initializes configuration for the plugin
  list-pipelines  List deployed pipeline definitions
  run-once        Deploy pipeline as a single run within given experiment...
  schedule        Schedules recurring execution of latest version of the...
  ui              Open VertexAI Pipelines UI in new browser tab







Build the docker image to be used in Vertex AI Pipelines runs

First, initialize the project with kedro-docker configuration by running:

$ kedro docker init





This command creates a several files, including .dockerignore. This file ensures that transient files are not included in the docker image and it requires small adjustment. Open it in your favourite text editor and extend the section # except the following by adding there:

!data/01_raw






Ensure right requirements.txt

You need to make sure that before you build the docker image and submit the job to Vertex AI Pipelines, all of your project’s Python package requirements are properly saved in requirements.txt, that includes this plugin. Ensure that the src/requirements.txt contains this line

kedro-vertexai







Adjusting Data Catalog to be compatible with Vertex AI

This change enforces raw input data existence in the image. While running locally, every intermediate dataset is stored as a MemoryDataSet. When running in VertexAI Pipelines, there is no shared-memory, Kedro-VertexAI plugin automatically handles intermediate dataset serialization - every intermediate dataset will be stored (as a compressed cloudpickle file) in GCS bucket specified in the vertexai.yml config under run_config.root key.
Adjusted catalog.yml should look like this (note: remove the rest of the entries which comes with the spaceflights starter - you need only companies,reviews,shuttles.)

companies:
  type: pandas.CSVDataSet
  filepath: data/01_raw/companies.csv
  layer: raw

reviews:
  type: pandas.CSVDataSet
  filepath: data/01_raw/reviews.csv
  layer: raw

shuttles:
  type: pandas.ExcelDataSet
  filepath: data/01_raw/shuttles.xlsx
  layer: raw





All intermediate and output data will be stored in the location with the following pattern:

gs://<run_config.root from vertexai.yml>/kedro-vertexai-temp/<vertex ai job name>/*.bin





Of course if you want to use intermediate/output data and store it a location of your choice, add it to the catalog. Be aware that you cannot use local paths - use gs:// paths instead.



Disable telemetry or ensure consent

Latest version of Kedro starters come with the kedro-telemetry installed, which by default prompts the user to allow or deny the data collection. Before submitting the job to Vertex AI Pipelines you have two options:


	allow the telemetry by setting consent: true in the .telemetry file in the project root directory


	disable telemetry by removing kedro-telemetry from the src/requirements.txt.




If you leave the .telemetry file with default consent: false, the pipeline will crash in runtime in Vertex AI, because kedro-telemetry will spawn an interactive prompt and ask for the permission to collect the data.

The usage of ${run_id} is described in section Dynamic configuration support.



Build the image

Execute:

kedro docker build --build-arg BASE_IMAGE=python:3.8-buster





When execution finishes, your docker image is ready. If you don’t use local cluster, you should push the image to the remote repository:

docker tag vertex-ai-plugin-demo:latest remote.repo.url.com/vertex-ai-plugin-demo:latest
docker push remote.repo.url.com/vertex-ai-plugin-demo:latest








Run the pipeline on Vertex AI

First, run init script to create the sample configuration. There are 2 parameters:


	PROJECT_ID which is ID of your Google Cloud Platform project - can be obtained from GCP Console [https://console.cloud.google.com/] or from command line (gcloud config get-value project)


	REGION - Google Cloud Platform region in which the Vertex AI pipelines should be executed (e.g. europe-west1).




kedro vertexai init <GCP PROJECT ID> <GCP REGION>
(...)
Configuration generated in /Users/getindata/vertex-ai-plugin-demo/conf/base/vertexai.yaml





Then adjust the conf/base/vertexai.yaml, especially:


	image: key should point to the full image name (like remote.repo.url.com/vertex-ai-plugin-demo:latest if you pushed the image at this name).


	root: key should point to the GCS bucket that will be used internally by Vertex AI and the plugin itself, e.g. your_bucket_name/subfolder-for-vertexai




Finally, everything is set to run the pipeline on Vertex AI Pipelines. Execute run-once command:

$ kedro vertexai run-once
2022-03-18 13:44:27,667 - kedro_vertexai.client - INFO - Generated pipeline definition was saved to /var/folders/0b/mdxthmvd74x90fp84zl4mb5h0000gn/T/kedro-vertexai2jyrt89b.json
See the Pipeline job here: https://console.cloud.google.com/vertex-ai/locations/europe-west1/pipelines/runs/vertex-ai-plugin-demo-20220318124425?project=gid-ml-ops-sandbox





As you can see, the pipeline was compiled and started in Vertex AI Pipelines. When you visit the link shown in logs you can observe the running pipeline:

[image: Kedro pipeline running in Vertex AI Pipelines]





            

          

      

      

    

  

    
      
          
            
  
GCP AI Platform support

Google Cloud’s AI Platform offers couple services that simplify Machine Learning
tasks with use of Kubeflow based components.


Using kedro with AI Platform Notebooks

AI Platform Notebooks [https://cloud.google.com/ai-platform-notebooks] provides
an easy way to manage and host JupyterLab based data science workbench environment.
What we’ve found out is that the default images provided by a service cause some
dependency conflicts. To avoid this issues make sure you use isolated virtual
environment, e.g. virtualenv [https://pypi.org/project/virtualenv/]. New virtual
environment can be created by simply invoking python -m virtualenv venv command.



Using kedro-kubeflow with AI Platform Pipelines

AI Platform Pipelines [https://cloud.google.com/ai-platform/pipelines/docs/introduction]
is a service that allows to easily deploy Kubeflow Pipelines [https://www.kubeflow.org/docs/pipelines/overview/pipelines-overview/]
on new or existing Google Kubernetes Engine clusters.

In general kedro-kubeflow plugin should work with AI Platform Pipelines out of
the box, with the only exception is that it requires authentication. Note that the host
variable should point to a dashboard URL generated by AI Platform Pipelines service
(e.g. https://653hddae86eb7b0-dot-europe-west1.pipelines.googleusercontent.com/),
just open the dashboard from the service page [https://console.cloud.google.com/ai-platform/pipelines/clusters]
and copy url from the browser.

Below is the list of authentication scenarios supported so far:


1. Connecting to AI Pipelines from AI Platform Notebooks

In this scenario authentication works out of the box with default credentials
mechanism.



2. Authentication to AI Pipelines from local environment

To interact with AI Platform Pipelines from local environment you can use the
mechanisms provided by Google Cloud SDK [https://cloud.google.com/sdk]. After
installing the SDK run google cloud application-default login to initialize
default credentials on your local machine.

You can use service account key for authentication as well. To make that work just
set GOOGLE_APPLICATION_CREDENTIALS environment variable to the path of where the
service account key file is stored.



3. Authenticating through IAP Proxy

Identity Aware Proxy [https://cloud.google.com/iap] is a product that allows
securing your cloud based applications with Google Identity.

To authenticate with IAP find out which oauth client ID is the proxy configured
with and then save it in IAP_CLIENT_ID environment variable. The authentication
should work seamlessly assuming identity you are using has been granted access to
the application.

The above will work if you are connecting from within GCP VM or locally with specified
service account credentials. It will NOT work for credentials obtained with google cloud application-default login.




Using kedro-kubeflow with Vertex AI Pipelines (EXPERIMENTAL)

Vertex AI Pipelines [https://cloud.google.com/vertex-ai/docs/pipelines]
is a fully managed service that allows to easily deploy
Kubeflow Pipelines [https://www.kubeflow.org/docs/pipelines/overview/pipelines-overview/]
on a serverless Google service. Vertex AI Pipelines [https://cloud.google.com/vertex-ai/docs/pipelines]
was still in a Preview mode when this plugin version was released, therefore plugin
capability is also limited.


1. Preparing configuration

In order the plugin picks Vertex AI Pipelines as a target infrastructure, it has to be indicated
in configuration. As the solution is serverless, no URL is to be provided. Instead, special set
of parameters has to be passed, so that connection is established with proper GCP service.

host: vertex-ai-pipelines
project_id: hosting-project
region: europe-west4
run_config:
  root: vertex-ai-pipelines-accessible-gcs-bucket/pipelines-specific-path





If the pipeline requires access to services that are not exposed to public internet, you need to configure VPC peering between Vertex internal network and VPC that hosts the internal service [https://cloud.google.com/vertex-ai/docs/general/vpc-peering] and then set the VPC identifier in the configuration. Optionally, you can add custom host aliases:

run_config:
  vertex_ai_networking:
    vpc: projects/12345/global/networks/name-of-vpc
    host_aliases:
    - ip: 10.10.10.10
      hostnames: ['mlflow.internal']
    - ip: 10.10.20.20
      hostnames: ['featurestore.internal']







2. Preparing environment variables

There are the following specific environment variables required for the pipeline to run correctly:


	SERVICE_ACCOUNT - full email of service account that job will use to run the pipeline. Account has
to have access to run_config.root path. Variable is optional, if no given, project compute account is used


	MLFLOW_TRACKING_TOKEN - identity token required if MLFlow is used inside the project and mlflow access
is protected. Token is passed as it is to kedro nodes in order to authenticate against MLFlow service.
Can be generated via gcloud auth print-identity-token command.






3. Supported commands

Following commands are supported:

kedro kubeflow compile
kedro kubeflow run-once
kedro kubeflow schedule
kedro kubeflow list-pipelines





[image: Vertex_AI_Pipelines]






            

          

      

      

    

  

    
      
          
            
  
Mlflow support

If you use MLflow [https://mlflow.org/] and kedro-mlflow [https://kedro-mlflow.readthedocs.io/] for the Kedro pipeline runs monitoring, the plugin will automatically enable support for:


	starting the experiment when the pipeline starts,


	logging all the parameters, tags, metrics and artifacts under unified MLFlow run.




To make sure that the plugin discovery mechanism works, add kedro-mlflow and kedro-vertexai as a dependencies to src/requirements.txt and run:

$ pip install -r src/requirements.txt
$ kedro mlflow init





Then, adjust the kedro-mlflow configuration and point to the mlflow server by editing conf/base/mlflow.yml and adjusting server.mlflow_tracking_uri key. Then, build the image:

$ kedro docker build





And re-push the image to the remote registry.
And verify how does it look in the Kubeflow UI. You should notice mlflow-start-run step on the very top.

[image: Mlflow step in Vertex AI]

Finally, start the pipeline. While it executes, the new Mlflow run is started and it’s constantly updated with the attributes provided by the next steps. Finally, the experiments runs page looks like:

[image: Mlflow UI]

The UI presents the pipeline status (in form of the icon) and latest node that was run (for failed runs in indicates at what step did the pipeline fail). Also, the vertexai_run_id and vertexai_job_name tags can be used to correlate Mlflow run with the Vertex AI pipeline execution.


Authorization

For MLflow deployments that are secured with some authorization mechanism, the requests being made need to (usually) have the Authorization header set. MLflow allows to plug-in custom headers via request_header_provider entry point. Our plug-in leverages this feature and exposes it in a form of a Kedro Hook.
Right now, using this hook requires to modify your project’s settings.py by first disabling kedro-mlflow hooks and then re-enabling it, as our Hook needs to attach before any of the kedro-mlflow’s hook attach.

We’re providing 2 implementations of the Authorization header provider, which obtain ID token from Google’s endpoints - either OAuth or IAM. Of course, you can implement your own authorization mechanism by inheriting from the kedro_vertexai.auth.mlflow_request_header_provider.RequestHeaderProviderWithKedroContext class.


Authorization with a service account email and OAuth Client ID (IAM)

Works well with Identity-Aware-Proxy deployments of MLflow, such as MLflow on App Engine [https://getindata.com/blog/deploying-mlflow-google-cloud-platform-using-app-engine/].
In the settings.py:

DISABLE_HOOKS_FOR_PLUGINS = ("kedro-mlflow",)
from kedro_vertexai.auth.mlflow_request_header_provider_hook import MLFlowRequestHeaderProviderHook
from kedro_vertexai.auth.gcp import MLFlowGoogleIAMRequestHeaderProvider
from kedro_mlflow.framework.hooks import MlflowHook
HOOKS = (MlflowHook(), MLFlowRequestHeaderProviderHook(MLFlowGoogleIAMRequestHeaderProvider), )





In the vertexai.yml:

run_config:
  # ... rest of the config
  mlflow:
    request_header_provider_params:
      client_id: <OAuth Client ID>
      service_account: sa@example.com







OAuth2.0 based authorization

In the setting.py:

DISABLE_HOOKS_FOR_PLUGINS = ("kedro-mlflow",)
from kedro_vertexai.auth.mlflow_request_header_provider_hook import MLFlowRequestHeaderProviderHook
from kedro_vertexai.auth.gcp import MLFlowGoogleOAuthCredentialsProvider
from kedro_mlflow.framework.hooks import MlflowHook
HOOKS = (MlflowHook(), MLFlowRequestHeaderProviderHook(MLFlowGoogleOAuthCredentialsProvider), )





In the vertexai.yml

run_config:
  # ... rest of the config
  mlflow:
    request_header_provider_params:
      client_id: <OAuth Client ID>







Custom authorization method

You need to inherit from kedro_vertexai.auth.mlflow_request_header_provider.RequestHeaderProviderWithKedroContext class.

from kedro_vertexai.auth.mlflow_request_header_provider import RequestHeaderProviderWithKedroContext
from cachetools import cached, TTLCache

class MyCustomMLflowHeaderProvider(RequestHeaderProviderWithKedroContext):
    def in_context(self):
        # here, self.params will contain all values from the vertexai.yml:run_config.mlflow.request_header_provider_params dictionary
        return "my_auth_info" in self.params

    @cached(TTLCache(1, ttl=3600)) # it's a good practice to cache the token for some time
    def request_headers(self):
        token = obtain_your_token_here()
        return {"Authorization": f"Bearer {token}", "X-My-Custom-Header": self.params["my_auth_info"]}





In the vertexai.yml

run_config:
  # ... rest of the config
  mlflow:
    request_header_provider_params:
      my_auth_info: YOLO










            

          

      

      

    

  

    
      
          
            
  
Continuous Deployment

With kedro pipelines started on the remote Kubeflow Pipelnes clusters, changes in the code require re-building docker images and (sometimes) changing the pipeline structure. To simplify this workflow, Kedro-kubeflow plugin is capable of creating configuration for the most popular CI/CD automation tools.

The auto generated configuration defines these actions:


	on any new push to the repository - image is re-built and the pipeline is started using run-once,


	on merge to master - image is re-built, the pipeline is registered in the Pipelines and scheduled to execute on the daily basis.




The behaviour and parameters (like schedule expression) can be adjusted by editing the generated files. The configuration assumes that Google Container Registry is used to store the images, but users can freely adapt it to any (private or public) docker images registry.


Github Actions

If the Kedro project is stored on github (either in private or public repository), Github Actions can be used to automate the Continuous Deployment. To configure the repository, go to Settings->Secrets and add there:


	GKE_PROJECT: ID of the google project.


	GKE_SA_KEY: service account key, encoded with base64 (this service account must have access to push images into registry),


	IAP_CLIENT_ID: id of the IAP proxy client to communicate with rest APIs.




Next, re-configure the project using

kedro kubeflow init --with-github-actions https://<endpoint_name>.endpoints.<project-name>.cloud.goog/pipelines





This command will generate Github Actions in .github/workflows directory. Then push the code to any branch and go to “Actions” tab in Github interface.





            

          

      

      

    

  

    
      
          
            
  
Authenticating to Kubeflow Pipelines API

Plugin supports 2 ways of authenticating to Kubeflow Pipelines API:


1. KFP behind IAP proxy on Google Cloud

It’s already described in GCP AI Platform support chapter.



2. KFP behind Dex+authservice

Dex is the recommended authentication mechanism for on-premise Kubeflow clusters. The usual setup looks in a way that:


	oidc-autheservice [https://github.com/arrikto/oidc-authservice] redirect unauthenticated users to Dex,


	Dex [https://github.com/dexidp/dex] authenticates user in remote system, like LDAP or OpenID and also acts as OpenID provider,


	oidc-authservice asks Dex for token and creates the session used across entire Kubeflow.




In order to use kedro-kubeflow behind Dex-secured clusters, use the following manual:


	Setup staticPassword [https://github.com/dexidp/dex/blob/b79d9a84bc0c35e13a9d5141e95b641af0f81c8f/cmd/dex/config_test.go#L105] authentication method and add a user that you’re going to use as CI/CD account.


	Point your Kedro project to /pipeline API on Kubeflow, for example: https://kubeflow.local/pipeline


	Set environment variables DEX_USERNAME and DEX_PASSWORD before calling kedro kubeflow
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